В России разработан комплекс для считывания закодированной в ДНК информации - «Европа» » «Новости Дня»

✔ В России разработан комплекс для считывания закодированной в ДНК информации - «Европа»


24 октября 2019
03:31
Биоинформатики ФИЦ «Институт цитологии и генетики СО РАН», Новосибирского государственного университета и университета им. Мартина Лютера (Германия) разработали уникальный программный комплекс, позволяющий повысить эффективность анализа дорогостоящих геномных экспериментов. Статья об этом опубликована в журнале Nucleic Acids Research.
Как поясняют ученые, комплекс предназначен для поиска в ДНК совместно встречающихся мотивов — участков, на которые «садятся» белки, управляющие транскрипцией, то есть считыванием закодированной в молекуле ДНК информации. Расположенные рядом мотивы, как правило, функционируют вместе, поэтому выявление таких пар позволит ученым предсказывать взаимодействия белков уже на этапе распознавания последовательности ДНК, а также исследовать роль этих взаимодействий в физиологических процессах.
Миллионы клеток организма синтезируют белки, которые непрерывно работают: переносят кислород, защищают от вторжения чужеродных агентов, сокращают и расслабляют мышечные волокна и выполняют массу других функций. Сведения о том, где и когда должны выполняться эти действия, зашифрованы в молекуле ДНК, причем информация записана при помощи всего четырех «букв» — нуклеотидов. Нуклеотиды объединяются в «слова» — гены, и каждый ген несет в себе сведения о белке, который может с него синтезироваться.
Структуру и функцию клетки определяет уникальная комбинация белков, и какой ей быть «решают» регуляторные элементы ДНК. Их структурные единицы: короткие последовательности «букв"-нуклеотидов или мотивы — опознаются белками-регуляторами (транскрипционными факторами), что приводит к запуску или, наоборот, блокированию процесса считывания генетической информации.
Чтобы найти все мотивы определенного белка-регулятора в геноме, используется дорогостоящий эксперимент, который называется ChIP-seq. Важно, что белки-регуляторы никогда не работают в одиночку: активность и специфичность каждого модулируется многочисленными партнерскими белками-регуляторами, и результат работы мотива зачастую определяется именно этими взаимодействиями. Поиск же потенциальных партнеров, как правило, сопряжен с проведением дополнительных ChIP-seq экспериментов, что многократно повышает стоимость исследования. Именно эту проблему с успехом решает новый программный комплекс.
«Наш метод позволяет по результатам лишь одного ChIP-seq эксперимента определить пары белков-регуляторов, работающих вместе, и описать соответствующие им участки связывания ДНК. Причем обнаруживаются и те пары мотивов, последовательности которых в ДНК перекрываются: то есть часть „букв“ общая. В традиционно существующих методах обработки отсутствует анализ перекрывания или требуется проводить множество дополнительных экспериментов ChIP-seq для потенциальных партнерских белков-регуляторов. Нужно отметить, что стоимость такого эксперимента довольно высока (несколько сотен тысяч рублей), поэтому возможность извлечь максимум информации из одного пула данных экономит деньги и время», — прокомментировал старший научный сотрудник лаборатории эволюционной биоинформатики и теоретической генетики ИЦиГ СО РАН, старший научный сотрудник лаборатории компьютерной транскриптомики и эволюционной биоинформатики НГУ кандидат биологических наук Виктор Левицкий.

Качество работы программы исследователи проверили, проанализировав уже имеющиеся в открытом доступе данные 164 ChIP-seq экспериментов.
«Новый программный комплекс может использоваться и теми специалистами, которые исследуют белок-белковые взаимодействия на молекуле ДНК. Транскрипционные факторы — это белки: они взаимодействуют, если находятся рядом, что и происходит, когда они „cадятся“ на близко расположенные мотивы. Изучение белок-белковых взаимодействий активно развивается, эксперименты в этой области дорогостоящие, поэтому наш алгоритм, обеспечивающий получение предварительных сведений о том, на какие белки стоит обратить внимание, будет востребован», — отметила заведующая лабораторией регуляции экспрессии генов и лабораторией эпигенетики стресса ФИЦ ИЦиГ СО РАН доктор биологических наук Татьяна Меркулова.

Новосибирские ученые получили патент на свою программу, она готова к практическому применению. В последние несколько лет появились и продолжают пополняться открытые базы, насчитывающие уже несколько десятков тысяч ChIP-seq экспериментов для разнообразных типов тканей, клеток и для разных белков-регуляторов. Алгоритм сибирских ученых может использоваться для поиска новых партнеров уже известных белков-регуляторов, ключевых для выполнения важных физиологических функций организма, например, иммунного ответа.
Работа выполнялась при поддержке Российского фонда фундаментальных исследований.

24 октября 2019 03:31 Биоинформатики ФИЦ «Институт цитологии и генетики СО РАН», Новосибирского государственного университета и университета им. Мартина Лютера (Германия) разработали уникальный программный комплекс, позволяющий повысить эффективность анализа дорогостоящих геномных экспериментов. Статья об этом опубликована в журнале Nucleic Acids Research. Как поясняют ученые, комплекс предназначен для поиска в ДНК совместно встречающихся мотивов — участков, на которые «садятся» белки, управляющие транскрипцией, то есть считыванием закодированной в молекуле ДНК информации. Расположенные рядом мотивы, как правило, функционируют вместе, поэтому выявление таких пар позволит ученым предсказывать взаимодействия белков уже на этапе распознавания последовательности ДНК, а также исследовать роль этих взаимодействий в физиологических процессах. Миллионы клеток организма синтезируют белки, которые непрерывно работают: переносят кислород, защищают от вторжения чужеродных агентов, сокращают и расслабляют мышечные волокна и выполняют массу других функций. Сведения о том, где и когда должны выполняться эти действия, зашифрованы в молекуле ДНК, причем информация записана при помощи всего четырех «букв» — нуклеотидов. Нуклеотиды объединяются в «слова» — гены, и каждый ген несет в себе сведения о белке, который может с него синтезироваться. Структуру и функцию клетки определяет уникальная комбинация белков, и какой ей быть «решают» регуляторные элементы ДНК. Их структурные единицы: короткие последовательности «букв"-нуклеотидов или мотивы — опознаются белками-регуляторами (транскрипционными факторами), что приводит к запуску или, наоборот, блокированию процесса считывания генетической информации. Чтобы найти все мотивы определенного белка-регулятора в геноме, используется дорогостоящий эксперимент, который называется ChIP-seq. Важно, что белки-регуляторы никогда не работают в одиночку: активность и специфичность каждого модулируется многочисленными партнерскими белками-регуляторами, и результат работы мотива зачастую определяется именно этими взаимодействиями. Поиск же потенциальных партнеров, как правило, сопряжен с проведением дополнительных ChIP-seq экспериментов, что многократно повышает стоимость исследования. Именно эту проблему с успехом решает новый программный комплекс. «Наш метод позволяет по результатам лишь одного ChIP-seq эксперимента определить пары белков-регуляторов, работающих вместе, и описать соответствующие им участки связывания ДНК. Причем обнаруживаются и те пары мотивов, последовательности которых в ДНК перекрываются: то есть часть „букв“ общая. В традиционно существующих методах обработки отсутствует анализ перекрывания или требуется проводить множество дополнительных экспериментов ChIP-seq для потенциальных партнерских белков-регуляторов. Нужно отметить, что стоимость такого эксперимента довольно высока (несколько сотен тысяч рублей), поэтому возможность извлечь максимум информации из одного пула данных экономит деньги и время», — прокомментировал старший научный сотрудник лаборатории эволюционной биоинформатики и теоретической генетики ИЦиГ СО РАН, старший научный сотрудник лаборатории компьютерной транскриптомики и эволюционной биоинформатики НГУ кандидат биологических наук Виктор Левицкий. Качество работы программы исследователи проверили, проанализировав уже имеющиеся в открытом доступе данные 164 ChIP-seq экспериментов. «Новый программный комплекс может использоваться и теми специалистами, которые исследуют белок-белковые взаимодействия на молекуле ДНК. Транскрипционные факторы — это белки: они взаимодействуют, если находятся рядом, что и происходит, когда они „cадятся“ на близко расположенные мотивы. Изучение белок-белковых взаимодействий активно развивается, эксперименты в этой области дорогостоящие, поэтому наш алгоритм, обеспечивающий получение предварительных сведений о том, на какие белки стоит обратить внимание, будет востребован», — отметила заведующая лабораторией регуляции экспрессии генов и лабораторией эпигенетики стресса ФИЦ ИЦиГ СО РАН доктор биологических наук Татьяна Меркулова. Новосибирские ученые получили патент на свою программу, она готова к практическому применению. В последние несколько лет появились и продолжают пополняться открытые базы, насчитывающие уже несколько десятков тысяч ChIP-seq экспериментов для разнообразных типов тканей, клеток и для разных белков-регуляторов. Алгоритм сибирских ученых может использоваться для поиска новых партнеров уже известных белков-регуляторов, ключевых для выполнения важных физиологических функций организма, например, иммунного ответа. Работа выполнялась при поддержке Российского фонда фундаментальных исследований.


Новости по теме





Добавить комментарий

показать все комментарии
Комментарии для сайта Cackle
→ 
Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика