В России найден новый способ лечения системных грибковых заболеваний - «Россия» » «Новости Дня»

✔ В России найден новый способ лечения системных грибковых заболеваний - «Россия»


21 июля 2019
00:53
Специалисты Института химической биологии и фундаментальной медицины СО РАН синтезировали белковые препараты (моноклональные антитела), показавшие высокие результаты в лечении грибкового заболевания — системного кандидоза. Эффективность новых соединений проверялась авторами в составе международной группы ученых. Работы проводились с лабораторными мышами, но в перспективе планируется создать гуманизированные антитела для терапии людей. Результаты исследования опубликованы в журнале Plos One.
Системные грибковые заболевания, к которым относится кандидоз, возникают обычно у пациентов, функции иммунной системы которых были нарушены, например в результате интенсивного курса химиотерапии, пересадки органов или заражения ВИЧ. Многие грибки, в том числе аспергиллы, кандиды, обладают устойчивостью к традиционно применяемым препаратам — антимикотикам. Лечение последними переносится тяжелее, чем антибиотиками, потому что грибы, как и люди, — эукариотические (ядерные) организмы, в отличие от безъядерных бактерий — прокариот. В результате средства, направленные на уничтожение грибковых заболеваний, в значительной степени повреждают и человеческие клетки.
Ученые работали с синтетическим антигеном — олигосахаридом ?-глюканом, созданным в лаборатории химии гликоконъюгатов Института органической химии им. Н. Д. Зелинского РАН. Применение синтетического, а не природного соединения позволяет добиться выработки антител специфичных именно к грибам, а также предсказать состав и структуру антигена, что дает возможность формировать антитела с определенными свойствами.
«У природных антигенов можно лишь приблизительно знать, что в них содержится: например, есть глюканы, но непонятно, сколько их в цепочке, разветвленные они или линейные. Структура синтетических соединений полностью известна. Отталкиваясь от нее, можно предположить, какой специфичностью будет обладать антитело и будут ли у него нужные характеристики, в частности терапевтические», — пояснил первый автор статьи младший научный сотрудник лаборатории молекулярной микробиологии ИХБФМ СО РАН Андрей Матвеев.

Антитела вырабатываются организмом в ответ на проникновение чужеродных агентов — антигенов (например, возбудителей инфекционных заболеваний) и, соответственно, даже введенные извне, не вызывают негативной реакции. Моноклональные антитела — продукт деятельности потомков одной и той же клетки иммунной системы. Они высокоспецифичны: то есть связываются лишь с определенным антигеном и, в зависимости от функции, могут выявлять чужеродный агент или уничтожать его.
Сейчас на мировом фармацевтическом рынке используется около 100 препаратов на основе моноклональных антител, ими в основном лечат раковые и аутоиммунные заболевания; пока есть только два противоинфекционных антитела: одно из них направлено на уничтожение вируса, другое — токсина бактерии.
Получение моноклональных антител происходит в несколько стадий: лабораторным мышам вводится антиген, затем из селезенок животных с хорошим иммунным ответом выделяются клетки, продуцирующие антитела, и сливаются с клетками раковой линии мышей. В результате получаются практически бессмертные культуры, которые могут долго производить нужные вещества.
«Сложность в том, что не всегда у мышей есть требуемая реакция на введенный антиген. Андрей Матвеев добился того, чтобы иммунный ответ был сильный, после чего получил отдельные клеточные клоны и выбрал те из них, что обладают наибольшей эффективностью связывания с антигеном. Их получилось не так много, но два антитела из отобранных продемонстрировали способность защитить мышей, зараженных смертельной дозой грибка Candida. После разовой инъекции одним из антител 50% животных выжили, это очень хороший показатель. Результативность другого соединения была ниже, но тоже значимая, к тому же любой курс лечения подразумевает серию, а не однократное введение лекарственного препарата», — комментирует соавтор статьи в Plos One заведующая лабораторией молекулярной микробиологии ИХБФМ СО РАН доктор биологических наук Нина Тикунова.

Эксперименты in vitro выявили и хорошую противогрибковую активность комбинации более эффективного антитела и антимикотика флуконазола. При этом оба действующих вещества были взяты в низких концентрациях, когда каждое из них по отдельности не оказывало лечебного эффекта.

21 июля 2019 00:53 Специалисты Института химической биологии и фундаментальной медицины СО РАН синтезировали белковые препараты (моноклональные антитела), показавшие высокие результаты в лечении грибкового заболевания — системного кандидоза. Эффективность новых соединений проверялась авторами в составе международной группы ученых. Работы проводились с лабораторными мышами, но в перспективе планируется создать гуманизированные антитела для терапии людей. Результаты исследования опубликованы в журнале Plos One. Системные грибковые заболевания, к которым относится кандидоз, возникают обычно у пациентов, функции иммунной системы которых были нарушены, например в результате интенсивного курса химиотерапии, пересадки органов или заражения ВИЧ. Многие грибки, в том числе аспергиллы, кандиды, обладают устойчивостью к традиционно применяемым препаратам — антимикотикам. Лечение последними переносится тяжелее, чем антибиотиками, потому что грибы, как и люди, — эукариотические (ядерные) организмы, в отличие от безъядерных бактерий — прокариот. В результате средства, направленные на уничтожение грибковых заболеваний, в значительной степени повреждают и человеческие клетки. Ученые работали с синтетическим антигеном — олигосахаридом ?-глюканом, созданным в лаборатории химии гликоконъюгатов Института органической химии им. Н. Д. Зелинского РАН. Применение синтетического, а не природного соединения позволяет добиться выработки антител специфичных именно к грибам, а также предсказать состав и структуру антигена, что дает возможность формировать антитела с определенными свойствами. «У природных антигенов можно лишь приблизительно знать, что в них содержится: например, есть глюканы, но непонятно, сколько их в цепочке, разветвленные они или линейные. Структура синтетических соединений полностью известна. Отталкиваясь от нее, можно предположить, какой специфичностью будет обладать антитело и будут ли у него нужные характеристики, в частности терапевтические», — пояснил первый автор статьи младший научный сотрудник лаборатории молекулярной микробиологии ИХБФМ СО РАН Андрей Матвеев. Антитела вырабатываются организмом в ответ на проникновение чужеродных агентов — антигенов (например, возбудителей инфекционных заболеваний) и, соответственно, даже введенные извне, не вызывают негативной реакции. Моноклональные антитела — продукт деятельности потомков одной и той же клетки иммунной системы. Они высокоспецифичны: то есть связываются лишь с определенным антигеном и, в зависимости от функции, могут выявлять чужеродный агент или уничтожать его. Сейчас на мировом фармацевтическом рынке используется около 100 препаратов на основе моноклональных антител, ими в основном лечат раковые и аутоиммунные заболевания; пока есть только два противоинфекционных антитела: одно из них направлено на уничтожение вируса, другое — токсина бактерии. Получение моноклональных антител происходит в несколько стадий: лабораторным мышам вводится антиген, затем из селезенок животных с хорошим иммунным ответом выделяются клетки, продуцирующие антитела, и сливаются с клетками раковой линии мышей. В результате получаются практически бессмертные культуры, которые могут долго производить нужные вещества. «Сложность в том, что не всегда у мышей есть требуемая реакция на введенный антиген. Андрей Матвеев добился того, чтобы иммунный ответ был сильный, после чего получил отдельные клеточные клоны и выбрал те из них, что обладают наибольшей эффективностью связывания с антигеном. Их получилось не так много, но два антитела из отобранных продемонстрировали способность защитить мышей, зараженных смертельной дозой грибка Candida. После разовой инъекции одним из антител 50% животных выжили, это очень хороший показатель. Результативность другого соединения была ниже, но тоже значимая, к тому же любой курс лечения подразумевает серию, а не однократное введение лекарственного препарата», — комментирует соавтор статьи в Plos One заведующая лабораторией молекулярной микробиологии ИХБФМ СО РАН доктор биологических наук Нина Тикунова. Эксперименты in vitro выявили и хорошую противогрибковую активность комбинации более эффективного антитела и антимикотика флуконазола. При этом оба действующих вещества были взяты в низких концентрациях, когда каждое из них по отдельности не оказывало лечебного эффекта.


Новости по теме





Добавить комментарий

показать все комментарии
Комментарии для сайта Cackle
→ 
Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика